

Single Particle Extinction and Scattering (SPES) enables the characterization and development of micro and nano particles in complex fluids

Claudia Cella, Tiziano Sanvito, Federico Mariani, Paolo Milani, Marco AC Potenza

Effective Optical Systems

Micro and nanoparticles in commercial goods

→ Particle sizing and characterization are fundamental for

Cella Claudia, Chemist and Particles R&D

2

Micro and nanoparticles characterization

Traditional technologies for particle analysis are based on light scattering:

Advantages

- cost effective
- easy to use
- quantitative information

Cella Claudia, Chemist and Particles R&D

Traditional light scattering techniques limitations

They consider ALL particles as perfect, uniform spheres of the same material

Polymeric

Cella Claudia, Chemist and Particles R&D

Traditional light scattering techniques limitations

But particles are **NOT** homogeneous, perfect, uniform spheres

Cella Claudia, Chemist and Particles R&D

- Traditional light scattering technologies are unsuitable for analysis in complex mixtures and real media
- Other complementary expensive and time-consuming analysis are needed
- Adequate sample preparation is necessary but results can be eventually altered

To overcome these limits, we propose a new approach based on Single Particle Extinction and Scattering (SPES) technology

6

SPES graphical scheme

SPES is able to detect two different properties of each analyzed particle

Cella Claudia, Chemist and Particles R&D

SPES distinguishes between size

SPES is able to discriminate particles with different size of the same material

Potenza MAC, Sanvito T, Pullia A, "Measuring the complex field scattered by single submicron particles", AIP Advances 5 (2015)

Cella Claudia, Chemist and Particles R&D

SPES distinguishes between materials

SPES is able to discriminate particles with the same size of different material

Potenza MAC, Sanvito T, Pullia A, "Measuring the complex field scattered by single submicron particles", AIP Advances 5 (2015)

Challenges: particles and complex fluids

Cella Claudia, Chemist and Particles R&D

www.eosinstruments.com

Effective Optical Systems

DLS is not able to distinguish between PS particles and serum components

Sanvito T, Bigini P, Cavanna MV, Fiordaliso F, Violatto M, Talamini L, Salmona M, Milani P, Potenza MAC Nanoscale (under submission)

11

Cella Claudia, Chemist and Particles R&D

SPES analyzes particles in mouse serum

SPES easily discriminates between PS particles and serum components

Sanvito T, Bigini P, Cavanna MV, Fiordaliso F, Violatto M, Talamini L, Salmona M, Milani P, Potenza MAC Nanoscale (under submission)

Cella Claudia, Chemist and Particles R&D

SPES discriminates between polydisperse poly(lactic-co-glycolic)acid PLGA particles and serum components

Sanvito T, Bigini P, Cavanna MV, Fiordaliso F, Violatto M, Talamini L, Salmona M, Milani P, Potenza MAC Nanoscale (under submission)

Cella Claudia, Chemist and Particles R&D

SPES discriminate PLGA particles and serum components, even at very low concentration, where DLS fails

Sanvito T, Bigini P, Cavanna MV, Fiordaliso F, Violatto M, Talamini L, Salmona M, Milani P, Potenza MAC Nanoscale (under submission)

Cella Claudia, Chemist and Particles R&D

SPES analyzes particles in whole blood

SPES ability to detect PS particles in medium as complex as whole blood opens opportunity for understanding interaction between particles and biocomponent

Sanvito T, Bigini P, Cavanna MV, Fiordaliso F, Violatto M, Talamini L, Salmona M, Milani P, Potenza MAC Nanoscale (under submission)

Cella Claudia, Chemist and Particles R&D

15

Challenges: particles and complex fluids

Cella Claudia, Chemist and Particles R&D

www.eosinstruments.com

Effective Optical Systems

DLS is not able to distinguish particle shape

DLS gives information on the particles size and size distribution of gold particles but is unable to distinguish between particles shape

Potenza MAC, Krpetic Z, Sanvito T, Cai Q, Monopoli M, de Araújo J, Cella C, Boselli L, Castagnola V, Milani P, Dawson K Nanoscale (submitted)

SPES discriminates particles with different shape

Differences of the surface plasmon resonance are detected by SPES that is able to distinguish different shape of gold particles

Potenza MAC, Krpetic Z, Sanvito T, Cai Q, Monopoli M, de Araújo J, Cella C, Boselli L, Castagnola V, Milani P, Dawson K Nanoscale (submitted)

18

Cella Claudia, Chemist and Particles R&D

• SPES is able to discriminate polymeric particles from the components of complex medium, even at very low particles concentration

Understand particles fate and stability in real systems

• SPES is able to distinguish gold particles with different size and shapes

Study the particle shape influence

Visit our new website for further applications www.eosinstruments.com

viale Ortles 22/4, 20139 Milano (Mi) – Italy E-Mail: claudia.cella@eosinstruments.com

Thank you all for your attention